博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
RSA算法优化
阅读量:7054 次
发布时间:2019-06-28

本文共 6435 字,大约阅读时间需要 21 分钟。

RSA算法优化

  1. 大数乘法
  2. 模乗优化
  3. 剩余定理(孙子定理)
  4. RSA加解密
  5. python的RSA计算优化

 

#-*- coding: utf-8 -*-'''/*********************************************************************************  *Copyright(C),2000-2013,KK Studio  *FileName:    rsa  *Author:      KingKong  *Version:     1.0  *Date:        20130709  *Description: //用于主要说明此程序文件完成的主要功能                //与其他模块或函数的接口、输出值、取值范围、                //含义及参数间的控制、顺序、独立及依赖关系  *Others:      //其他内容说明  *Function List:      //主要函数列表,每条记录应包含函数名及功能简要说明     1.RSA     2.RSA CRT     3.RSA MulMod      *History:            //修改历史记录列表,每条修改记录应包含修改日期、修改者及修改内容简介     1.20130702:**********************************************************************************/'''# sudo apt-get install python-setuptools# sudo easy_install rsa-3.1.1-py2.7.egg# import binascii#print repr(binascii.unhexlify('0123456789abcdef')) EASYKEY = Truedef CRT_SRC(c, n, p, q, d=None, exp1=None, exp2=None):    '''    剩余定理的基础实现    c是密文    exp1 = d % (p-1)    exp2 = d % (q-1)    (1)计算d1←d(mod(p-1))与d2←d(mod(q-1));    (2)计算C1←c(modp)与C2←c(modq);     (3)计算M1←C1^d1 (modp)与M2←C2^d2(modq);    (4)计算B1←q-1(modp)与B2←p-1(modq);    (5)计算m←(M1*B1*q+M2*B2*p)(modN)    '''    c1 = c % p    c2 = c % q    if d != None:        d1 = d % (p-1)        d2 = d % (q-1)    elif exp1 != None:        d1 = exp1        d2 = exp2    else:        return 0        import rsa    y1 = rsa.common.inverse(q, p)    y2 = rsa.common.inverse(p, q)        m1 = pow(c1, d1, p)    m2 = pow(c2, d2, q)        m = (m1*q*y1 + m2*p*y2)%n    return mdef CRT_MMRC(c, n, p, q, coef, d=None, exp1=None, exp2=None):    '''    剩余定理的快速实现    c是密文    exp1 = d % (p-1)    exp2 = d % (q-1)    self.coef = rsa.common.inverse(q, p)        (1)计算d1←d(mod(p-1))与d2←d(mod(q-1));    (2)计算C1←c(mod p)与C2←c(mod q);     (3)计算M1←C1^d1 (modp)与M2←C2^d2(modq);    (4)计算B←p^-1(modp);     (5)计算m←M1+[(M2-M1)*B(modq)]*p    '''    c1 = c % p    c2 = c % q    if d != None:        d1 = d % (p-1)        d2 = d % (q-1)    elif exp1 != None:        d1 = exp1        d2 = exp2    else:        return 0        y1 = coef        m1 = pow(c1, d1, p)    m2 = pow(c2, d2, q)        m = m2 + (((m1-m2)*y1)%p)*q        return mdef dec2bin(number):    '''    转换数字为二进制字符串    :param number:    '''    m = {'0':'0000', '1':'0001', '2':'0010', '3':'0011',          '4':'0100', '5':'0101', '6':'0110', '7':'0111',          '8':'1000', '9':'1001', 'a':'1010', 'b':'1011',          'c':'1100', 'd':'1101', 'e':'1110', 'f':'1111'}    s = hex(number)[2:].rstrip('L')    return ''.join(m[x] for x in s).lstrip('0')  #print dec2bin(10), len(dec2bin(10)) def MulMod(m, r, e):    '''    a^m%r    343^474%2003=1819    '''    c = 1L    b = dec2bin(e)    length = 0;    while(length < (len(b))):        c = (c*c)%r;#         print c, b[length]        if (b[length] == "1"):                c = (c * m) % r;             length = length + 1;       return cdef RSA_ENC(m, n, e):    '''    RSA加密,处理小数据    :param m:    :param n:    :param e:    '''    return m**e%ndef RSA_DEC(c, n, d):    '''    RSA解密,处理小数据    :param c:    :param n:    :param d:    '''        return c**d%ndef RSA_ENC_Fast(m, n, e):    '''    RSA加密,处理大数,加速处理    :param m:    :param n:    :param e:    '''    return pow(m, e, n)def RSA_DEC_Fast(c, n, d):    '''    RSA解密,处理大数,加速处理    :param c:    :param n:    :param d:    '''    return pow(c, d, n)def main():    if EASYKEY == True:            n = 3727264081        d = 3349121513        e = 65537        p = 65063        q = 57287        exp1 = 55063        exp2 = 10095        coef = 50797    else:        n = 133258714669197804455201327242498072620373933399830946281753432589524373262313529490829857553863402092345114025453326547226675345976454214588491707723768296657213731743431331618394950680996499630699923360897031860272219245284778878593279460078556127568327691304405295451439978360703575209901885763486177804307        d = 88839143112798536303467551494998715080249288933220630854502288393016248841542352993886571702575601394896742683635551031484450230650969476392327805149178849037945720743702166302175205762735121467799910708222531056914667451445033725048565810909623712841116051352011118012226070375134490825522121220289982706011        e = 3           p = 11933806723950669295207846073987787705734940703054957716278358174994444687961839258803748173125990183157845108140695431551588508864566689717312651807708143        q = 11166488426677208786957286068049106111694059354243605518996542043073672540329181171939965947432316470456431280477737669321209492974404928986620399396037149        exp1 = 7955871149300446196805230715991858470489960468703305144185572116662963125307892839202498782083993455438563405427130287701059005909711126478208434538472095        exp2 = 7444325617784805857971524045366070741129372902829070345997694695382448360219454114626643964954877646970954186985158446214139661982936619324413599597358099        coef = 9906165481638181059785426924280606820580988396251355030296387570862138753002899617836092623649635665775562393844489153345463178213574659230193241203692517        m = 9999        print '********RSA BEGIN********************************************'    print 'message:', m    c = RSA_ENC(m, n, e)    print 'encrypt:', c    r = RSA_DEC_Fast(c, n, d)    print 'decrypt:', r    print '********RSA END**********************************************'        print '********RSA FAST BEGIN***************************************'    print 'message:', m    c = RSA_ENC_Fast(m, n, e)    print 'encrypt:', c    r = RSA_DEC_Fast(c, n, d)    print 'decrypt:', r    print '********RSA FAST END*****************************************'        print '********RSA MulMod BEGIN*************************************'    print 'message:', m    c = MulMod(m, n, e)    print 'encrypt:', c    r = MulMod(c, n, d)        print 'decrypt:', r    print '********RSA MulMod END***************************************'    print '********RSA CRT BEGIN****************************************'    print 'message:', m    c = RSA_ENC_Fast(m, n, e)    print 'encrypt:', c    r = CRT_SRC(c, n, p, q, d)    print 'decrypt:', r    print '********RSA CRT END******************************************'    print '********RSA CRT FAST BEGIN***********************************'    print 'message:', m    c = RSA_ENC_Fast(m, n, e)    print 'encrypt:', c    r = CRT_MMRC(c, n, p, q, coef, d, exp1, exp2)    print 'decrypt:', r    print '********RSA CRT FAST END*************************************'    if __name__ == '__main__':    main()

 

 

 

转载地址:http://hxool.baihongyu.com/

你可能感兴趣的文章